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Abstract

Currently, the United States Navy performs routine intrusive maintenance on
CH-46 helicopter gearboxes in order to diagnose and correct possible fault conditions
(incipient faults) which could eventually lead to gearbox failure. This type of
preventative maintenance is costly and it decreases mission readiness by temporarily
grounding usable helicopters. Non-invasive detection of these fault conditions would
save time and prove cost-effective in both manpower and materials. This research
deals with the development of a non-invasive fault detector through a combination of
digital signal processing and artificial neural network (ANN) technology. The
detector will classify incipient faults based on real-time vibration data taken from the
gearbox itself.

Neural networks are systems of interconnected units that are trained to
compute a specific output as a non-linear function of their inputs. For some time the
United States Navy has been interested in the use of artificial neural networks in
monitoring the health of helicopter gearboxes. In order to determine the detection
sensitivity of this method in comparison with traditional invasive methods, the USN
funded Westland Helicopters Ltd to conduct a series of CH-46 gearbox rig tests. In
these tests, the gearbox was seeded with nine different fault conditions. This seeded
fault testing provided the vibration data necessary to develop and test the feasibility of
an artificial neural network for fault classification. This research deals with the
formation of the pattern vectors to be used in the neural network classifier, the
construction of the classification network, and an analysis of results.

Key Words: Artificial neural networks; condition based maintenance, digital signal
processing; fault diagnostics; health monitoring; incipient faults; pattern recognition
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Introduction

Traditionally, the Navy has used invasive methods for preventative

maintenance of helicopter gearboxes. These methods have proven costly in both

manpower and resources. A requirement to improve several aspects of fault detection

has existed for several years, especially within the rotary wing community. These

requirements have been set forth to improve mission readiness through more effective

maintenance, elimination of losses of aircraft and personnel, and reduction of

maintenance related costs [4]. In addition, the need to extend operational service

lifetimes of aircraft as well as a reduction of manpower have made these

improvements more urgent. The use of non-invasive diagnostic procedures allows

aircraft faults to be diagnosed at the organizational level (during normal service), as

opposed to discovery, during tear-down at the intermediate or depot level. Depot level

includes rework facilities such as the Naval Air Rework Facility at Cherry Point.

This research involves the timely detection of CH-46 helicopter gearbox faults

through non-invasive vibration monitoring. An example of a typical CH-46

Helicopter mission is illustrated in Figure a. Digital signal processing coupled with a

pattern recognition algorithm, such as an artificial neural network or a Bayesian

network, provides a promising means of classifying real-time vibration data for fault

detection. Several methods of fault detection for rotary winged aircraft are currently

used by the United States Navy, but none have proven 100 percent effective at

preventing catastrophic failure, and most cannot specifically identify drive-train faults
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[4]. These methods include the use of chip detectors, the Navy Oil Analysis

Program (NOAP) [15],

component cards, and vibration

analysis. More recently, the

development of the Helicopter

Integrated Diagnostic System

(HIDS) [4], and the use of

commercial-off-the-shelf
Fig. a: CH-46 Performing Vertical Replenishment

(COTS) components have

vastly improved the ability to perform condition based maintenance.

Recently, Westland Helicopter Ltd. collected the vibration data necessary to

investigate the possibility of applying new methods for determining incipient fault

conditions. The data, collected by Westland Helicopters Ltd. and digitized by NRAD

(Naval Research and Development Center) in San Diego, California, include

representative vibration characteristics of a CH-46 gearbox under several different

conditions (both defective and non-defective). The conditions tested include eight

specific fault areas which are listed below:

0 no defect
* input pinion bearing corrosion (first and second defect level)

0 spiral bevel input pinion spalling (first and second defect level) (Fig. b)

0 helical input pinion chipping (second defect level)

0 collector gear cracking

* quill shaft cracking
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* planetary bearing corrosion

* helical idler gear cracking.

Fig. b: Input Pinion Spalling (NAWC) 141

A single mixbox and one aft main transmission were installed on a test rig

(Fig. c) and run at nine different torque conditions. Vibration data were recorded

using eight different accelerometers and an optical tachometer with an analog tape

recorder. Only one faulty component at a time was introduced into the gearbox

during each of the test runs. Each of the test runs was conducted over a sufficient

period of time to provide reproducible and representative gearbox vibration

information. The test rig used to monitor these conditions provided a safe means of

collecting data that - if encountered during normal operation - could lead to tragedy.
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The Fig. c: General Test Rig Assembly (NAWC) 141 obje

ctive of this research is to develop the digital signal processing and classification

techniques necessary to implement non-invasive fault testing on an aft CH-46

gearbox. One of the primary aims of this project is reduction of the data set by

determining the important signal characteristics and filtering out the unnecessary data.

By determining what characterizes each individual flaw in the Westland data set, a

more general "fingerprint" can be established so that similar flaws in other rotating

machines can also be detected. This project not only provides a method for detecting

these specific fault conditions in a CH-46 gearbox, but furnishes the groundwork for

applying this method of fault detection to other rotating devices sharing similar

components.
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Chapter 1:

Data Collection and the CH-46 Aft Gearbox

The main problem with creating a reliable, on-board diagnostics system has

been the lack of raw data needed to characterize fault conditions. Since most Class A

mishaps (loss of aircraft and/or personnel) are due to engine/drive-train failures, the

need to collect information about engine/drive-train faults is crucial.

1. 1 The Westland Universal Test Rig

Westland's universal transmission test rig was intended for fatigue testing of

helicopter gearboxes with up to three driving inputs and a single output, and is

composed of 3) x 3500 shaft horsepower electric drives (capable of 25000 rpm), and

two water brake dynamometers capable of absorbing up to 6000 shaft horsepower. [2]

The 'Magna Power' electronic drives were coupled to the gearbox through an

overdrive gear system coupled to a high speed reversing gearbox. Since the helical

input pinion on a CH-46 turns at 3 )24.60 Hz during normal operation, the electronic

drive's shaft frequency of 49.9 5 Hz was stepped up to 324.60 Hz by an overdrive

stage. The schematic for the test rig is illustrated in Figure 1. 1.

1.2 Instrumentation

The instrument package used to monitor gearbox vibration was supplied by

the Naval Air Warfare Center (NAWC), Aircraft Division (Patuxent River). The
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Fig. 1.1: Test Rig and Components (Westland Helicopters) 121

package included eight 'Endevco 7259A" accelerometers. which were mounted on

special brackets also supplied by the NAWC. Also placed on the gearbox was an

optical tachometer that fitted in place of the blade fold drive motor. The inputs from

each of the eight accelerometers, the tachometer signal, and a tape servo reference

tone were all recorded on individual channels of a 28 channel 'Racal Storehouse'

analog tape recorder at a rate of 15 inches per second. The analog information was

later filtered with a non-aliasing filter and digitized at a sampling rate of 103,116.08

Hz. Figure 1.2 shows the gearbox and sensor placement (sensors 4,5,6, and 8).
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44

Fig. 1.2: Sensor Placement (Westland Helicopters) 121

1.3 The CH-46 Aft Gearbox

An important part of analyzing the data collected by Westland Helicopters

involves understanding the basic operation of the gearbox itself. Primarily, the gear

mesh frequencies (the product of shaft frequency and number of gear teeth), shaft

frequencies, and resonant frequencies of internal parts can correlate with the vibration

characteristics associated with specific fault conditions. Figure 1.3) illustrates the

basic schematic for a CH-46 aft gearbox. The input shaft frequency (3 24.60 Hz) is

reduced by a helical idler gear to 126.23 )Hz. The shaft speed is then further reduced

by a spur pinionlcollector gear to 42.65 Hz (the collector gear combines the port and

starboard inputs). The quill shaft is driven by the collector gear at 42.65 Hz, and its

speed is again reduced by a spiral bevel pinion/gear combination. The spiral bevel

gear turns at 17.60 Hz, and its shaft frequency is further reduced to 4.40 Hz through
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yet another reduction stage involving a sun. planetary, and ring gear combination [2].

Table 1.1 shows shaft and gear mesh frequencies for the main gearbox parts. Figure

1.3 illustrates the gearbox schematic.

114

(12 1", " "

• -" " - ,' "

Port I/P J

- / --. . -

L19
"9 8 q.- <8 11

7 '

Figure 1.3: CH-46 Gearbox Schematic (Westland Helicopters) 121

Table 1.1: Shaft and Gear Mesh Frequencies

Part Shaft Frequency No. of Teeth Gear Mesh Freq.

Helical Input Pinion (9) 324.60 Hz 28 9088.8 Hz

Helical Idler Gear (8) 126.2 Hz 72 9088.8 Hz

Spur Pinion (7) 126.23 Hz 25 3H155.75 Hz

Collector Gear (6) 42.65 Hz 74 3155.75 Hz

Blower Spur Pinion (10) 126.23 Hz 25 3 155.75 Hz

Blower Bevel Gear (11) 126.23 Hz 25 3155.75 Hz
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Part Shaft Frequency No. of Teeth Gear Mesh Freq.

Blower Pinion (12) 101.80 Hz 3 1 3155.75 Hz

Quill Shaft 42.65 Hz - -

Spiral Bevel Pinion (5) 42.65 Hz 26 1108.90 Hz

Spiral Bevel Gear (4) 17.60 Hz 63 1 108.90 Hz

Sun Gear (3) 39 514.80 Hz

Planet Gear (2) 39 514.80 Hz

Ring Gear (1) 117 514.80 Hz

Aux Drive Gear (15) 130 2288 Hz

Accessory Drive Aft (16) 20 2288 Hz

Rotor Position Drive (17) 42 4804.8 Hz

Scavenge Pump Drive (18) 64 4804.8 Hz

Optical Tach Drive (19) 42 4804.8 Hz

Output Shaft 4.40 Hz
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Chapter 2:

Digital Signal Processing

2.1 Initial Processing of Raw Data

The initial step in processing the raw data involved reading the digitized

information into the computer so that it could be processed and manipulated. The

data were digitized by NRAD at a sample rate of 103,116.08 Hz with 16 bit

quantization using a ten channel data acquisition system. The data format was 16-bit

two's complement (short integer, big-endian). It was sample multiplexed into 20-byte

frames on the CDs. The multiplex scheme is shown below in Table 2. 1:

Table 2.1: Data storage scheme for digitized vibration data

Bytes 1-2 Channel 1 800Hz Reference Tone

Bytes 3-4 Channel 2 Accelerometer #1

Bytes 5-6 Channel 3 Accelerometer #2

Bytes 7-8 Channel 4 Accelerometer #3

Bytes 9-10 Channel 5 Accelerometer #4

Bytes 11-12 Channel 6 Accelerometer #5

Bytes 13-14 Channel 7 Accelerometer #6

Bytes 15-16 Channel 8 Accelerometer #7

Bytes 17-18 Channel 9 Accelerometer #8

Bytes 19-20 Channel 10 Tachometer

One file of this format contained approximately 21 seconds of data taken at

normal operating speed and temperature. Each of these files contained data
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corresponding to each of the eigQht sensors for a specific fault at set torque level.

Before any type of signal processing could be performed on the data. it was necessary

to de-multiplex the data into files that contained data for each individual sensor. This

was accomplished by writing a MATLAB "in" file that parsed the data for the

accelerometers, the reference tone, and the tachometer into ten individual files. This

program was applied to each of the 68 original files, creating 680 output files of 3.9

Mb in size. These smaller files were then saved to the computer's hard drive.

2.2 Digital Demodulation

The operation of any gearbox centers around the rotation of the shafts and

gears that compose the machine. A non-faulted gearbox would tend to be balanced

and function more smoothly than one with a fault condition present. A cracked shaft

or gear would cause vibrations that are superimposed on the normal rotational

vibrations. Intuitively, this can be viewed as a modulation process [ 12]. It was

hypothesized that amplitude, phase, and frequency modulation (AM, PM, and FM)

would be apparent in the accelerometer signals. In order to take advantage of this

characteristic, the analytic signal (defined below) was formed and used to calculate

the envelope and phase of the original signals. The digital demodulation process

provided a means to reduce the original data set greatly.

The Hilbert transform was the first step in forming the analytic signal. For a

real signal f~t'O the Hilbert transform [14] is defined in the time domain (denote by o)
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as the convolution off(t) by 1/(7t-t) as defined by Equation (2.1).

fh(t) = f (t)® 1 • -TJ (2.1)/ • t /7-C -t- r

To express the Hilbert transform function.Af,(', in the frequency domain, we apply

the Fourier transform to Eq. 2.1, where S" } denotes the continuous Fourier transform

operator [14] and F(o)) is the Fourier spectrum of the original signal.

1{f,() Y,,((o) =F(,-o) (2.2)

where -{ -. = •I1O (.3

sgn(ow)=1 for wo>O, 0 for o.=0, and -1 for (o<O.

Therefore, F,(wo) =(-/ :'n(wo)) "F(wo). (2.4)

Fh(o) = j'F((o) for c9<0 (2.5)

j 'F(wo) for wo>O

= 0 for wo=0

Now that the Hilbert Transform is defined, the analytic signal representation

of f(t) can be easily determined. The analytic signal representation of f(I) is a complex

valued signal in the time domain with a one sided spectral density in the frequency
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domain [14]. The real part of the analytic signal, z(t), is equal to the original signal.

The imaginary part of z(t) is equal to the Hilbert Transform off(t). This relationship

can be written mathematically as:

z(M = (t) + jft,() (2.6)

By taking the Fourier transform of z(t), we find:

Z(w))=F(wo) +jF,2(o) = F(o) +/(-j sgn(wo) "F(wo)) (2.7)

From the definition of F 2(wo) above (eqn 2.5), it can be verified that the spectral

density of z(t) is a one-sided function in the frequency domain:

Z(6)) = 2F('o) for w > 0 (2.8)

= F(6w) forw=0

- 0 forw<0

In other words, Z(wo) is an upper single-sideband signal in the baseband which

can be found by doubling the positive side of the original frequency spectrum, and

zeroing its negative components. In Discrete Fourier Transform (DFT) sense, the

negative side of the frequency spectrum lies between N/2+1 and N-1, where N is the

number of points used with the DFT. A discrete version of the analytic signal z[n]

can be determined in the time domain by taking its DFT, doubling the positive

spectrum, and then taking its Inverse DFT (IDFT).

An important application of the analytic signal, z(t), is that it can be used for

demodulation whenf(t) can be modeled as an amplitude, frequency, or phase

modulated function (AM, FM, or PM) [14]. Iff(t) is a double side-band with large-
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carrier AM signal (DSB-LC), it can be shown that the absolute value of z(1), or the

envelope, recovers the modulating component of the AM signal. In addition, the

phase ofz(I can be used to recover the modulating component when ,§l) is modeled

as an FM or a PM signal. It is necessaiy to remove the discontinuities in the

computational process of the phase function by using the "unwrap" command in

MATLAB. This command removes the computational discontinuities in the radian

phase by changing absolute phase jumps greater than pi to their 2*pi complement. A

linear regression algorithm is applied to the unwrapped signal, and the straight line

carrier trend is computed and subtracted. The remaining difference phase signal is

defined as the demodulated phase function which was accompanying the carrier trend.

This demodulated signal is in the base-band and is referred to in communication

theory as the angle modulation on the carrier. This modulation can be attributed to

either phase or frequency change. If phase modulation is assumed, then the signal is

used directly. If frequency modulation is assumed, then the derivative of the angle

modulation provides the frequency modulation (FM). Therefore the formation of the

analytic signal provides a means to AM, PM, and FM demodulate the original signal.

In order to apply this demodulation technique on a finite length signal, the following

algorithm steps must be employed:

0 Take the FFT of the signal

0 Apply the analytic signal filter in the frequency domain (as defined above)

* Compute the phase of the analytic signal

0 Unwrap the phase function



* Compute and subtract the linear carrier trend (producing the demodulated PM

signal)

* Differentiate the PM signal in order to produce the demodulated FM signal.

2.3 Ensemble Averaging

It is not uncommon for a real information carrying signal to be masked in

additive noise, such as random Gaussian noise. Depending on the signal-to-noise

voltage ratio (which is defined as the ratio of the root mean square of the signal to the

root mean square of the noise), a single Fourier spectral estimate may be sufficient to

identify and quantify the spectral lines in the computed spectrum. If the signal to

noise ratio is poor, then the process of ensemble averaging can help in the

identification of spectral lines. In the ensemble averaging process (or Bartlett

smoothing procedure [51), the original signal is windowed in the time domain as

described below. The Fourier magnitude spectrum is then calculated for each of the

independent records. Since the phase information is lost in this transformation, the

spectral estimates can be averaged, providing a statistically reliable frequency

spectrum whose signal to noise ratio is improved approximately by the square root of

the number of records averaged when the number of records is large (greater than

1 00). This process is very important in reducing the number of points in the data set,

while preserving useful information. A long record may consist of several million

points, while the resultant ensemble frequency spectrum may consist of only a few

hundred points.
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Each of the independent time records was windowed in the time domain by

taking the product of a Harming window function with the segmented record. The

windowing reduces spectral leakage at the expense of frequency resolution. In

general, a, Hanning (or cosine-squared) window function is defined as [14]:

z -t I 2nTt
w(t) = cos' (I -(+cos ) for Itl • - and w(t) =0 elsewhere (2. 10)

T 2 T 2

The coefficients of the Hanning window are determined by:

w(m) =-I(I1+cos MV) for jm•ý10 (2.11)
2 10

The use of a Hanning window results in a frequency spectrum whose

frequency resolution is decreased by a factor of two over that of a standard rectangular

window, yet reduces the nearest leakage lobe by approximately 16 dB. For example,

an N-point FFT of rectangular windowed data will have twice the frequency

resolution of an N-point FFT of data windowed using a Hanning algorithm. The

frequency spectrum of each of the windowed time records was then calculated, and

the resultant frequency spectra were then averaged in order to produce one spectrum

whose signal-to-noise ratio was improved by a factor of the square root of the

number of averaged records. The ensemble average frequency (magnitude) spectrum

was calculated for the signals from each sensor for every fault condition. Sampled

amplitudes of frequency components will serve as inputs to the neural network to be
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used for classification later. During the ensemble process. the standard deviation

(root mean square value) of the individual time records was also determined. This

will also be used as an input to the neural network.

The ensemble averaging technique was also used to determine the frequency

spectrum of the envelope, PM, and FM signals. Again, several independent time

records were demodulated using the analytic signal. The frequency spectra of the

AM, PM, and FM signals were then found and ensemble averaged as explained

above. The root mean square, RMS, value of the demodulated signals was also

determined by averaging the RIVS value among each of the separate time records for

each envelope, PM, and FM signal. This process was carried out for the signals from

each sensor for every fault condition.

2.4 Peak Detection, Moving Average Filter and Signal-to-Noise Ratio

Although it was easy to distinguish rugged signal characteristics visually from

the frequency spectra, the sheer amount of data present made it necessary to automate

the process. In order to determine rugged features, a peak detection filter was

developed that compared the area beneath a signal peak to the area of the surrounding

noise. If this ratio was above a specified threshold, then the point was deemed rugged

and kept for formation of the pattern vector. This filter also provided a means of

determining the signal-to-noise ratio, which can also be used to help identify gearbox

condition. Since it is expected that the background noise will change during gearbox

operation, determination of the signal-to-noise ratio is a suitable method to
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Figure 2.1 Continuum in Frequency Spectrum
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describe important features quantitatively. By subtracting the signal peaks from the

original signal and applying a fiftieth order moving average filter, a broad-band

continuum was determined that provided yet more insight into gearbox health. This

continuum is a result of either noise, short-duration impulses in the time-domain, or a

combination of both. Regardless, each flaw had a unique continuum associated with

it. An example of such a continuum is illustrated in Figure 2. 1.

2.5 Processing the Data

The primary goal involved in this step was to determine important, or

"rugged", signal characteristics that describe the individual fault conditions. These

features would provide a means of distinguishing a faulty gearbox from a good

gearbox, and a means of pinpointing the actual flaw if one were to occur. The
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techniques described earlier served as tools used to determine the important signal

characteristics. The necessary steps during the processing were:

* to determine and examine the frequency spectra of the signals from the eight
accelerometers corresponding to each of the fault conditions

* to find the RMS value of each of these signals

* to use the analytic signal representation of each of the signals in order to
perform the AM, PM, and FM demodulation

* to determine and examine the frequency spectra of the envelope; PM, and FM
signals derived from each of the original signals

* to find the RMS value of each envelope, PM, and FM signal

The trade-off between frequency resolution and signal-to-noise ratio was a

major consideration when determining the number of points to use in the FFT. Since

approximately one-third of the data will be used to train the neural network classifier,

6 seconds (618,696 points) of data were initially processed for each individual signal

(each of the sampled signals comprise nearly 21 seconds of raw data). With a

sampling rate of 103 , 116.08 Hz, a single 618,696 point FFT would have provided 1 /3

Hz frequency resolution (using a Hanning window), yet the signal-to-noise ratio

would remain unimproved since only one record would be used in the ensemble

average. Since the aim was to increase the signal-to-noise ratio as much as possible

while retaining frequency resolution, the number of points used in the FFT was

gradually increased until all line-splitting ceased. It was determined that line splitting

stopped when frequency resolution was roughly 7 Hz. With a Hannling window

algorithm, 7 Hz resolution is achieved when the number of points (n) used in the FFT

is n>2*fs/7. Since fs=103),1 16.08, the number of points needed in the FFT was at
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least 29,461. By using a value of n that is a power of 2, the FFT can be employed as

opposed to the DFT. The number of complex operations involved in the FFT is equal

Ilog(n)
to n -- while the DFT involves n- complex operations [13]. Therefore, by

log(2)

using n=2'5 =32768 points as oppposed to 29461, the processing time is sped up by a

factor of approximately 1,766. Therefore, the original 618,696 point records were

divided into independent 32.768 point records and windowed using the Hanning

algorithm. Further inspection indicated that the signal-to-noise ratio was fairly high,

therefore many ensemble averages were not necessary. It was decided that improving

the signal-to-noise ratio by a factor of four was more than sufficient to identify

rugged features, therefore 16 independent records were ensemble averaged.

Once it was decided that the data needed to be divided into mutually exclusive

32,768 point (.318 second) records, a major part of this research involved writing a

program in MATLAB that performed the calculations necessary to determine and

save the following information into files: the ensemble frequency spectrum, the RMS

value, the ensemble envelope spectrum (AM spectrum), AM RMS value, the

ensemble PM spectrum, the PM RMS value, the ensemble FM spectrum, and the FM

RMS value for each of the 580 original signals. The program output this data

graphically, saved the vectors to files, and also print the graphical output which

consist of the frequency spectrum, the envelope spectrum, the PM spectrum, along

with the RMS value of each of these signals. This program reduced the number of
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Fig. 2.2: Output for Non-Faulted Condition
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points in the data set by approximately 96%. Examples of the graphical output for

the no defect condition at sensor 7 (Fig 2.2) is compared to the output for the quill

shaft crack condition (Fig 2.3).

The helical input pinion shaft turns at a constant rate of 324.60 Hz during

gearbox operation. Therefore frequency normalization is unnecessary, yet can be

achieved by dividing the frequency index of the magnitude spectrum by the frequency

of the tachometer signal.

The first plot both Fig. 2.2 and Fig. 2.3 represents the ensemble averaged

magnitude spectrum for each condition. Sixteen individual .318 second time records
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Figure 2.3 Output for Quill Shaft Crack Condition
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were averaged in order to achieve 6.3 Hz resolution and an improved signal-to-noise

ratio. It becomes visually apparent that the quill shaft fault suffers frequency

modulation, with carrier frequencies of 3 156, 6312, and 9468 Hz. The line structure

(FM modulation) that appears in this defect around the 3156 Hz and 6312 Hz peaks of

the magnitude spectrum became apparent only by increasing the frequency resolution

of the FFT to at least 12.6 Hz (16,384 points using a Hanning window). This

information would be lost without using at least a 16,384 point FFT. The large

amplitude peak at 3156 Hz is common to both conditions, as well as the harmonically

related peaks at 6312 Hz, and 9468 Hz. These harmonics are hypothesized to be a

result of vibration in the spur pinion, collector gear, and blower bevel pinion/gear,

which all have mesh frequencies of 3 155.75 Hz.
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The second plot in each figure represents the spectrum of the envelope

associated with each fault. This was found using the analytic signal and complex

demodulation technique described earlier. As with the magnitude spectrum, sixteen

individual .1 8 second records were averaged in order to improve siganal-to-noise

ratio. The quill shaft crack shows signs of frequency modulation, with a modulating

frequency of about 43 Hz. It is also apparent that the continuum associated with the

quill shaft crack occupies a narrower bandwidth than that of the non-faulted

condition.

The third plot in each figure is the spectrum of the phase modulation. The

phase modulation and its derivative, frequency modulation, were also found using the

analytic signal. Again, the quill shaft fault shows a fairly large peak at 43 Hz (note

that the y-axes differ between the plots). This is consistent with the fact that the quill

shaft turns at 43 Hz within the gearbox. As hypothesized, the crack in the shaft seems

to be causing a modulation at the shaft frequency.

Also apparent is a unique continuum in both frequency spectra (as illustrated

in Fig 2. 1). It is hypothesized that this continuum is due partly to noise, and partly to

short impulse-like events in the time domain. The duration of such an event can be

determined by Tevenjl~/Bandwidth of the continuum. It is also hypothesized that this

event is harmonically related to the tachometer signal. By finding the phase

relationship between the event and the tachometer signal, another means of fault

classification is provided.
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Chapter 3:

Classification of Fault Condition

Following a visual inspection of computer plots, the information extracted in

the digital signal processing phase of the research seemed statistically significant. In

other words, the variance between fault conditions appeared to be sufficient for

classification of gearbox health. To verifyj this hypothesis, it was necessary to

develop a classification algorithm- that could take the processed data and return an

output corresponding to the condition of the gearbox. In order to do this, separate

artificial neural networks were constructed to classify data from each of the eight

sensors.

3.1 The Artificial Neural Network

An artificial neural network (ANN) is a machine learning algorithm that can

learn a specific task from examples. ANN's are used in pattern and sequence

recognition problems where a relationship between problem and solution is known,

but not enough is known explicitly to write a program that can relate the two.

Essentially, a neural network is a computer model of the human brain. Like a neuron

(Fig. 3. 1), the processing elements (PE's) have many input paths (dendrites) and a

single output path (axon) which is related to a sum of the inputs. These processing

elements are interconnected through what is called a "hidden layer," in which various
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Figure 3.1: Human Neuron 181 weights are distributed betweenhefnapse I
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[7]. One of the most popular

network architectures is called the Multi-Layer Perceptron (MLP), Fig 3.3. Figure 3.2

illustrates a typical network structure [3].

Figure 3.2: Structure typical of a neural network [3]
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There are two modes of operation for an artificial neural network: learning and

recall. In the learning phase, the network is given a training set for which the input

and output are known. The neural net then adapts and modifies its connection

weights until the output corresponds with the given input. In the recall phase of

operation, the network is fed with information not included in the training set. The

output is then matched to the most similar training set vector [7].

Output Layer of
SProcessing Elements

, Hidden Layer of

"Processing Elements

tInput Buffer I

Figure 3.3: Multi-Layer Pereeptron 181

3.2 Construction of the Neural Classifier

The program 'Predict' by NeuralWare Inc. was used to build the fault

classification networks. The training method used was based on a technique called

gradient back-propagation. Back-propagation involves assigning responsibility for

mismatches in classification to each of the processing elements in a network. This re-

weighting of connections among the hidden layer is accomplished by propagating the
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gradient of the objective function back through the network [8]. The weight update is

accomplished via the gradient-descent method as used for simple perceptrons with

differentiable units [8].

x k)=input (pattern vector)

d k)=ouput (fault condition represented numerically)

Back-propagation involves two phases of data flow for a given input-output

pair (x(k), d (kI). First, the input pattern is propagated from the input to the output layer

in order to form an output y(k). The difference between dIk) and y(k) results in an error

signal which is then back-propagated through the previous layers in order to update

their connection weights. In order to demonstrate this learning rule, consider a three

layer network that consists of m PE's in the input layer, I PE's in the hidden layer, and

n PE's in the output layer [6]. A PE q in the hidden layer receives an input of

netq = . Vqj Xj (3.1)

and results in an output of

Zq = a(netq) = a(Z VqiXj). (3.2)
j=1

Therefore, the output for PE i in the output layer is
/ 1n

net, WJCZq = wiqa(y vq,1XI),(3)

q=1 q=1 I

and it produces a final output of a(nel, ).

Next, we must consider the output signals and their back propagation.
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nl 1

Error(w) =.5Z [di - a(Y wiqzq)]
2  (3.4)

i=1=l

According to the gradient descent method, the connection weights between the hidden

and output laver are then adjusted according to

AWiq 9E- 
(35)

2wiq

Substitution from equations (3.1)-(3.4) and application of the chain rule results in the

equality

9dE. c y, 1 net,
Awiq := -[ -et, ][ ] = i[d, -y,][a'(neti)][Zq]= 7ldo,Zq (3.6)

where 6,, is the error signal and its double subscript indicates the it' node in the output

layer. For the weight update between input to hidden connections, the chain rule

coupled with the gradient-descent method is again employed in order to find Avq/ and

(ýh, .[6]

dE 9E 9Zq a )

1q =- = -[-] [-] = a'(net) wq (3.7)Sdnetq q nt

The learning rule employed in this project was based on back propagation, and

is called adaptive gradient learning.

3.3 Formation of the Pattern Vector

While attempting to optimize the networks, the most important consideration

involved the construction of statistically significant pattern vectors. Inputs to the
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neural network classifier consisted of sampled amplitudes of frequency from the

filtered magnitude. envelope, PM. and FM spectra. continua, as well as the RMS

values corresponding to the associated signals. Since the record length for each FFT

was 32,768 points, it was not feasible to enter all of this information into the network.

The sheer amount of data would overwhelm the network and result in a memory error.

In order to select only rugged signal features (those not due to noise), the moving

average filter technique was used to calculate a signal-to-noise estimate for each point

in the magnitude, envelope, PM, and FM spectrum.

Since the data were collected at multiple torque conditions, within-class (same

sensor) variance needs to be reduced in order to form a reliable pattern vector. In

order to accomplish this, rugged signal features associated with each fault at full

torque were extracted using the moving average filter technique. Only the points

with a value above a user defined threshold were retained for formation of the pattern

vector. By extracting the rugged points corresponding to each fault condition, a

'template' was formed that was guaranteed to contain features common to every fault

condition. Since the vectors created for classification were sensor dependent, eight

separate classification networks were created. Table 3.1A shows the number of points

from the magnitude, envelope, FM, and PM spectra used in the formation of the

pattern vectors for each of the eight networks. In addition to the spectral information,

the root mean square value of the corresponding signals and the frequency continuum

were used as inputs.



Table 3.1: Number of rugged spectral points used as inputs to each network

Spectrum Net I Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8

Magnitude 159 133 208 178 49 44 131 49

Envelope 82 52 102 173 11 1 75 12

PM 46 13 33) 31 1 12 159 1 0

FM 44 11 31 29 7 3 57 7

3.4 Network Architecture

Following the formation of statistically significant pattern vectors, robust

networks could be created to classify data from each of the eight individual sensors.

The data were split into training and test sets by a ratio of 70/30. The Predict

software itself was responsible for determining the number of input, hidden, and

output proces sing elements in each neural network.

While many training schemes involve a fixed architecture for the network to

be trained, the software used in this research employed a dynamic method, called

".cascade learning." to determine a suitable number of hidden nodes. This

constructive method was developed by Scott Fahlman of Carnigie Mellon University,

and is characterized by the following properties [8]:

* Hidden PE's are added to the network one at a time during training

* New hidden PE's are connected to both the input buffer and the previously
established hidden nodes

* Network construction is stopped when performance shows no further
improvement
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The software accomplished this by finding the best correlation score during

testing and training by modifying connection weights among processing elements.

Network architecture for each of the eight networks is shown in Table 3.2. Since the

networks were responsible for classifying nine different fault conditions or no-fault,

each network consisted of 10 outputs.

Table 3.2 Network Architecture

PE's Net 1 Net 2 Net3 Net 4 Net 5 Net 6 Net 7 Net 8

Input 12 8 8 7 8 9 8 9

Hidden 1 2 0 1 2 1 0 0

Output 10 10 10 10 10 10 10 10

3.5 Testing the Classification Networks

Upon construction of several networks and experimenting with the learning

parameters governing the training process, eight robust networks were developed (one

for each of the eight sensors). The classification results shown in Table 3.3 were

obtained.

Table 3.3 Classification Results

Fault Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8

CGC 90% 90% 90% 90% 90% 80% 100% 90%

HIGC 100% 90% 100% 90% 100% 100% 90% 100%
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HIPC2 100% 100% 90% 100% 100% 100% 100% 100%

IPBC1 90% 90% 90% 80% 90% 100% 90% 80%

IPBC2 90% 80% 90% 100% 100% 90% 100% 100%

PBC2 100% 100% 100% 100% 100% 100% 100% 100%

QSC 90% 90% 80% 90% 90% 80% 90% 90%

SBIPS 1 100% 90% 100% 100% 90% 100% 100% 100%

SBIPS2 90% 100% 90% 90% 100% 100% 90% 90%

No Fault 100% 90% 100% 100% 100% 100% 90% 100%

These results were collected using test data that was drawn from a separate

bank that had not been introduced to the network during the training process. The

data bank consisted of ten records for each fault taken at random torque levels. As

evident from Table 3).3, the networks performed accurate fault classification with an

average accuracy of 94.5% per sensor .By combining the outputs of these eight

networks and taking a majority rule. the chance of inaccurate detection of a specific

fault is on the order of 10-5. It is also important to note that the fault detector was very

good at general fault detection, and was not prone to false warning. In other words, its

ability to distinguish a faulted gearbox from a non-faulted gearbox (without

specifically identifying the fault) approached 98% on average per sensor. The

chances of a misclassification involving gearbox health on a majority of the sensors is

on the order of 10-7.

It was initially hypothesized that certain sensors would outperform others

based on sensor location. For example, sensor four was located close to the starboard
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quill shaft. therefore it was originally believed that sensor four would outperform the

other sensors in detectingy a cracked quill shaft. This was not found to be the case,

because all sensors performed well at detecting any of the faults. Only a minor

variance in classification rates among the different sensors was realized. Therefore,

the use of all sensors in classification will improve accurate detection probabilities.

For simplification in constructing a fault detector and cost savings reasons, a very

accurate detector can be implemented using only sensors one, five, and seven. Only

when the three sensors agree on a specific fault condition will the detector send a

warning. This limits the chances of a false warning to nearly zero, and maintains a

detection accuracy of over 90 percent, based on the test data.
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Chaptcr 4:

Overview

The development of a non-invasive fault detector of this type vastly improves

the Navy's ability to perform condition based maintenance (CBM) on fleet assets,

such as rotary-winged aircraft. Most non-invasive techniques currently in use have

trouble identifying a healthy gearbox from a faulted one, much less have the ability to

distinguish between specific fault areas. For example, chip detection and oil analysis

programs cannot identify gear faults due to root bending fatigue or crack propagation

through the gear web, vice through the gear tooth (see Fig. 4.1) [4]. These two

detection methods perform well only when a fault results in foreign material being

scattered inside the gearbox.

The classifier developed in this project

not only has the ability to pinpoint faults, but

identifies faults due to root bending fatigue and

cak propagation. It also has the ability to

I ~ 1".distinguish fault severity, for example input

pinion bearing corrosion (first and second

defect levels), and spiral bevel input pinion

Figure 4.2: Crack Propagation spalling (first and second defect levels).

Through Gear Web (NAWC) 141 Another attractive feature of this classifier is its

ability to be implemented on existing aircraft using commercial -off-the-shelf
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components. With current computers capable of calculating large FFT's in

microseconds, the digital signal processing algorithms implemented in this research

can be done almost instantaneously, allowing the detector to run in real-time during

aircraft operation. By coupling this detection scheme wvith other procedures such as

oil analysis, chip detection, and temperature analysis, a very accurate and reliable

fault detector can be implemented at low cost.

In conclusion, pattern recognition through the use of artificial neural networks

is a very reliable method for implementing condition based maintenance, and it is a

viable and safe alternative to current procedures. Preventative maintenance is costly,

and it decreases mission readiness by temporarily grounding usable helicopters. Non-

invasive detection of fault conditions will save time and prove cost-effective in both

manpower and materials.



Future Work

There are several areas where the classification scheme presented in this work

could be improved. Primarily, a relationship between the continuum in the frequency

domain and a short duration spike in the time domain is hypothesized to exist. The

phase relationship between this event and the tachometer pulse can provide another

means to classify, fault condition accurately. In other words, the frequency of

occurrence of this event as well as its envelope can provide insight into gearbox

condition. Due to the complexity involved in the relationship of the tachometer signal

to the rotation of specific gearbox parts, time did not permit full investigation of this

phenomenon. Although the phase relationship of this event was not accounted for in

the pattern vectors used in this project, the continuum associated with this event was

used in the primary training sets.

Another extension of this project involves testing the classification networks

with data taken from other helicopter gearboxes, such as the SH-60 main gearbox. It

was intended for the fault detector developed in this project to be a general detector:

in other words, it would be able to classify faults in other rotating machinery sharing

similar components (following frequency normalization). This quality could not be

tested due to the lack of raw data available.

By combining this method of fault classification with others, such as chip

detectors, oil analysis, and component cards, a very reliable system for fault

classification can be developed.
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